Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The biofilm granulation mechanisms depend on the predominant populations involved
 
conference presentation

The biofilm granulation mechanisms depend on the predominant populations involved

Weissbrodt, David Grégory
•
Neu, Thomas
•
Lochmatter, Samuel  
Show more
2013
71st Annual Assembly of the SSM

The novel aerobic granular sludge technology is attractive for intensified biological nutrient removal from wastewater. This process is based on self-granulated flocs forming fast-settling mobile biofilms with a gel-like consistence, called “granules”. Mechanisms of bacterial selection and self-immobilisation as spherical biofilms have risen fundamental interest. Investigations were conducted on the relationship between the bacterial populations involved and the resulting internal granular architectures. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors operated under different conditions selecting for fast-growing heterotrophic organisms (floc-forming Zoogloea and filamentous Burkholderiales affiliates), for slower-growing polyphosphate-accumulating organisms (“Ca. Accumulibacter”) and their glycogen-accumulating competitors (“Ca. Competibacter”), as well as for nitrifying organisms. Dynamics of bacterial community compositions were analyzed using a novel PyroTRF-ID bioinformatics methodology combining T-RFLP and pyrosequencing targeting the 16S rRNA gene pool. Structural times series were followed by CLSM combined with overall biomass staining with Rhodamine 6G, with fluorescence lectin-binding analysis (FLBA) of glycoconjugate matrices, and with 16S rRNA targeted FISH to monitor the spatial dynamics of phylotypes within granules. Under wash-out conditions, initial predominance of fast-growing Zoogloea spp. resulted in the formation of smooth and homogeneous granular biofilms by swelling and outgrowth of Zoogloea colonies around flocs. These continuous zoogloeal biofilm matrices were then embedding the proliferation of dense clusters of Accumulibacter, Competibacter, and nitrifiers from the granule core outwards. This led to the formation of heterogeneous multispecies mature granular biofilms. Granules cultivated in enrichment cultures of Accumulibacter and Competibacter resulted from the heterogeneous development of compact microcolonies around flocs. Under unfavorable conditions, filamentous Burkholderiales structures proliferated by penetrating outside granules leading to impaired settling performances. In conclusion, biofilm granulation mechanisms depend on the predominant organisms involved, and on their physiological properties. According to FLBA, the structural gelling agent is likely to exhibit a complex exopolysaccharide composition.

  • Details
  • Metrics
Type
conference presentation
Author(s)
Weissbrodt, David Grégory
Neu, Thomas
Lochmatter, Samuel  
Holliger, Christof  
Date Issued

2013

Written at

OTHER

EPFL units
LBE  
Event nameEvent placeEvent date
71st Annual Assembly of the SSM

Interlaken, Switzerland

June 26-27, 2013

Available on Infoscience
February 19, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/100985
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés