Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Predicting and Preventing Inconsistencies in Deployed Distributed Systems
 
Loading...
Thumbnail Image
research article

Predicting and Preventing Inconsistencies in Deployed Distributed Systems

Yabandeh, Maysam  
•
Knezevic, Nikola
•
Kostic, Dejan  
Show more
2010
ACM Transactions on Computer Systems

We propose a new approach for developing and deploying distributed systems, in which nodes predict distributed consequences of their actions, and use this information to detect and avoid errors. Each node continuously runs a state exploration algorithm on a recent consistent snapshot of its neighborhood and predicts possible future violations of specified safety properties. We describe a new state exploration algorithm, consequence prediction, which explores causally related chains of events that lead to property violation. This article describes the design and implementation of this approach, termed CrystalBall. We evaluate CrystalBall on RandTree, BulletPrime, Paxos, and Chord distributed system implementations. We identified new bugs in mature Mace implementations of three systems. Furthermore, we show that if the bug is not corrected during system development, CrystalBall is effective in steering the execution away from inconsistent states at runtime.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés