Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. A general framework for homotopic descent and codescent
 
preprint

A general framework for homotopic descent and codescent

Hess, Kathryn  
2010

In this paper we elaborate a general homotopy-theoretic framework in which to study problems of descent and completion and of their duals, codescent and cocompletion. Our approach to homotopic (co)descent and to derived (co)completion can be viewed as $\infty$-category-theoretic, as our framework is constructed in the universe of simplicially enriched categories, which are a model for $(\infty, 1)$-categories. We provide general criteria, reminiscent of Mandell's theorem on $E_{\infty}$-algebra models of $p$-complete spaces, under which homotopic (co)descent is satisfied. Furthermore, we construct general descent and codescent spectral sequences, which we interpret in terms of derived (co)completion and homotopic (co)descent. We prove that Baum-Connes and Farrell-Jones-type isomorphism conjectures for assembly can be expressed in the language of derived cocompletion and show that a number of very well-known spectral sequences, such as the unstable and stable Adams spectral sequences, the Adams-Novikov spectral sequence and the descent spectral sequence of a map, are examples of general (co)descent spectral sequences. There is also a close relationship between the Lichtenbaum-Quillen conjecture and homotopic descent along the Dwyer-Friedlander map from algebraic K-theory to etale K-theory.

  • Files
  • Details
  • Metrics
Type
preprint
ArXiv ID

1001.1556

Author(s)
Hess, Kathryn  
Date Issued

2010

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
UPHESS  
Available on Infoscience
January 26, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/46133
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés