Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. SUNBIRD : a simulation-based model for full-shape density-split clustering
 
Loading...
Thumbnail Image
research article

SUNBIRD : a simulation-based model for full-shape density-split clustering

Cuesta-Lazaro, Carolina
•
Paillas, Enrique
•
Yuan, Sihan
Show more
June 8, 2024
Monthly Notices Of The Royal Astronomical Society

Combining galaxy clustering information from regions of different environmental densities can help break cosmological parameter degeneracies and access non-Gaussian information from the density field that is not readily captured by the standard two-point correlation function (2PCF) analyses. However, modelling these density-dependent statistics down to the non-linear regime has so far remained challenging. We present a simulation-based model that is able to capture the cosmological dependence of the full shape of the density-split clustering (DSC) statistics down to intra-halo scales. Our models are based on neural-network emulators that are trained on high-fidelity mock galaxy catalogues within an extended-Lambda CDM framework, incorporating the effects of redshift-space, Alcock-Paczynski distortions, and models of the halo-galaxy connection. Our models reach sub-per cent level accuracy down to 1 h(-1 )Mpc and are robust against different choices of galaxy-halo connection modelling. When combined with the galaxy 2PCF, DSC can tighten the constraints on omega(cdm), sigma(8), and n(s) by factors of 2.9, 1.9, and 2.1, respectively, compared to a 2PCF-only analysis. DSC additionally puts strong constraints on environment-based assembly bias parameters.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

stae1234.pdf

Type

Publisher

Access type

openaccess

License Condition

CC BY

Size

7.07 MB

Format

Adobe PDF

Checksum (MD5)

c093fb05a995c521420d2cd7efc8b998

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés