TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression
Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation. While the literature addresses this by proposing alternate formulations to mitigate the impact of the predicted covariance, we focus on improving this predicted covariance itself. We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean? (2) In the absence of supervision, how can we quantify the accuracy of covariance estimation? We address (1) with a Taylor Induced Covariance (TIC), which captures the randomness of the predicted mean by incorporating its gradient and curvature through the second order Taylor polynomial. Furthermore, we tackle (2) by introducing the Task Agnostic Correlations (TAC) metric, which combines the notion of correlations and absolute error to evaluate the covariance. We evaluate TIC-TAC across multiple experiments spanning synthetic and real-world datasets. Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of negative log-likelihood. We make our code available at: https://github.com/vita-epfl/TIC-TAC
CameraReady_ICML_2024__TIC_TAC.pdf
postprint
openaccess
CC BY-NC-ND
5.58 MB
Adobe PDF
d72ed64f60242a4383f15af4a1a90d7e