Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain
 
research article

A mathematical model of compartmentalized neurotransmitter metabolism in the human brain

Gruetter, R.  
•
Seaquist, E. R.
•
Ugurbil, K.
2001
American Journal of Physiology - Endocrinology and Metabolism

After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux (VPDH), 0.57 ± 0.06 μmol·g-1·min-1, was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate (Vx, 0.57 ± 0.19 μmol·g-1·min-1), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMRGlc(ox)] was 0.41 ± 0.03 μmol·g-1·min-1, and (glial) pyruvate carboxylation (VPC) was 0.09 ± 0.02 μmol·g-1·min-1. The flux through glutamine synthetase (Vsyn) was 0.26 ± 0.06 μmol·g-1·min-1. A fraction of Vsyn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission (VNT) was 0.17 ± 0.05 μmol·g-1·min-1. The ratio [VNT/CMRGlc(ox)] was 0.41 ± 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (∼90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AJP2001.PDF

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

282.8 KB

Format

Adobe PDF

Checksum (MD5)

39583c224f23e101a5b3fda4670e2072

Loading...
Thumbnail Image
Name

AJP_corrigenda.pdf

Access type

openaccess

Size

21.51 KB

Format

Adobe PDF

Checksum (MD5)

3bac1da472e84ab07714ad9b10541ac7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés