Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Analysis of the swelling pressure development in opalinus clay – experimental and modelling aspects
 
conference paper

Analysis of the swelling pressure development in opalinus clay – experimental and modelling aspects

Péron, Hervé
•
Salager, Simon  
•
Nuth, Mathieu  
Show more
2009
Proceedings of the 2nd Int. Conf. on Fault and top seals
2nd Int. Conf. on Fault and top seals

In the context of nuclear waste geological storage, deep argillaceous formations are likely to be subjected to complex mechanical, hydraulic, and thermal loads. In particular, the argillaceous material can be firstly dried, and then re-wetted. During the latter process, the material experiences swelling and can develop swelling pressure if swelling deformations are constrained. In this contribution, the results of swelling pressure tests on shale performed in totally constrained conditions (isochoric tests) are presented. A constitutive model (ACMEG-S) is used to predict the value of the swelling pressure in such conditions. The model is made of two parts. The mechanical part addresses the stress-strain behaviour of the material, as a result of effective stress variation. An elasto-plastic approach is employed, and Bishop's unsaturated effective stress, which is a function of the degree of saturation, the suction and the externally applied stress, is used as the mechanical stress. The water retention part of the model defines the relation between the degree of saturation and the suction within the material. The results put into light some factors that control the swelling pressure value, in particular the degree of saturation and the plastic behaviour of the material.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

C06.pdf

Access type

restricted

Size

238.83 KB

Format

Adobe PDF

Checksum (MD5)

bc08423be74c487dbab9da8d44ca046f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés