Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Processing and micro-mechanical characterization of multi-component transition MC carbides in iron
 
research article

Processing and micro-mechanical characterization of multi-component transition MC carbides in iron

Deillon, Léa  
•
Fornabaio, Marta  
•
Zagar, Goran  
Show more
March 6, 2021
Journal of the European Ceramic Society

We prepare multi-component transition monocarbides of chosen composition by arc-melting together a pre-alloy of the transition metals and cast iron. Based on the elements Ti, Ta, V, Nb and W, 51 different binary, ternary and quaternary compositions are produced. The intrinsic hardness H and modulus E of the resulting iron-embedded carbide particles are directly measured using nanoindentation. Of all compositions tested here WC shows the highest modulus while two (Ta,V)C and (Ti,W)C carbides are shown to have a hardness 15% higher than that of all binary carbides; some (Ti,Ta,V)C compositions furthermore display interesting combinations of properties. The modulus and hardness variations with composition show that the valence electron concentration, which has been proposed to be a dominant parameter in predicting carbide hardness and modulus, is not a useful single predictor of optimal compositions. Other important parameters therefore also govern the hardness and modulus of MC carbides.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés