Plug-and-Play Decentralized Model Predictive Control
In this paper we consider a linear system structured into physically coupled subsystems and propose a decentralized control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. The design procedure is totally decentralized, since the synthesis of a local controller uses only information on a subsystem and its neighbors, i.e. subsystems coupled to it. We first derive tests for checking if a subsystem can be plugged into (or unplugged from) an existing plant without spoiling overall stability and constraint satisfaction. When this is possible, we show how to automatize the design of local controllers so that it can be carried out in parallel by smart actuators equipped with computational resources and capable to exchange information with neighboring subsystems. In particular, local controllers exploit tube-based Model Predictive Control (MPC) in order to guarantee robustness with respect to physical coupling among subsystems. Finally, an application of the proposed control design procedure to frequency control in power networks is presented.
2012
REVIEWED