Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. MATHICSE Technical Report : An algebraic least squares reduced basis method for the solution of parametrized Stokes equations
 
Loading...
Thumbnail Image
working paper

MATHICSE Technical Report : An algebraic least squares reduced basis method for the solution of parametrized Stokes equations

Dal Santo, Niccolò  
•
Deparis, Simone  
•
Manzoni, Andrea  
Show more
June 14, 2018

In this paper we propose a new, purely algebraic, Petrov-Galerkin reduced basis (RB) method to solve the parametrized Stokes equations, where parameters serve to identify the (variable) domain geometry. Our method is obtained as an algebraic least squares reduced basis (aLS-RB) method, and improves the existing RB methods for Stokes equations in several directions. First of all, it does not require to enrich the velocity space, as often done when dealing with a velocitypressure formulation, relying on a Petrov-Galerkin RB method rather than on a Galerkin RB (G-RB) method. Then, it exploits a suitable approximation of the matrix-norm in the definition of the (global) supremizing operator. The proposed method also provides a fully automated procedure to assemble and solve the RB problem, able to treat any kind of parametrization, and we rigorously prove the stability of the resulting aLS-RB problem (in the sense of a suitable inf-sup condition). Next, we introduce a coarse aLSRB (caLSRB) method, which is obtained by employing an approximated RB test space, and further improves the efficiency of the aLSRB method both offline and online. We provide numerical comparisons between the proposed methods and the current state-of-art G-RB methods. The new approach results in a more convenient option both during the offline and the online stage of computation, as shown by the numerical results.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Report-21.2017_DSN_SD_AN_AQ__NEW.pdf

Access type

openaccess

Size

1.05 MB

Format

Adobe PDF

Checksum (MD5)

db098c3c3eab89ea069e063ff8c8a768

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés