Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Rapid Deployment of Curved Surfaces via Programmable Auxetics
 
research article

Rapid Deployment of Curved Surfaces via Programmable Auxetics

Konakovic-Lukovic, Mina
•
Panetta, Julian  
•
Crane, Keenan
Show more
August 1, 2018
Acm Transactions On Graphics

Deployable structures are physical mechanisms that can easily transition between two or more geometric configurations; such structures enable industrial, scientific, and consumer applications at a wide variety of scales. This paper develops novel deployable structures that can approximate a large class of doubly-curved surfaces and are easily actuated from a flat initial state via inflation or gravitational loading. The structures are based on two-dimensional rigid mechanical linkages that implicitly encode the curvature of the target shape via a user-programmable pattern that permits locally isotropic scaling under load. We explicitly characterize the shapes that can be realized by such structures-in particular, we show that they can approximate target surfaces of positive mean curvature and bounded scale distortion relative to a given reference domain. Based on this observation, we develop efficient computational design algorithms for approximating a given input geometry. The resulting designs can be rapidly manufactured via digital fabrication technologies such as laser cutting, CNC milling, or 3D printing. We validate our approach through a series of physical prototypes and present several application case studies, ranging from surgical implants to large-scale deployable architecture.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

pubs_teaser.png

Type

Thumbnail

Access type

openaccess

License Condition

copyright

Size

549.53 KB

Format

PNG

Checksum (MD5)

61eca5428731438cd5f9d4d79d7dbaf8

Loading...
Thumbnail Image
Name

paper.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

8.65 MB

Format

Adobe PDF

Checksum (MD5)

9b50de77ccfaac976a2f5b5f14738b9e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés