Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Study of the Sextans dwarf spheroidal galaxy from the DART Ca ii triplet survey star
 
Loading...
Thumbnail Image
research article

Study of the Sextans dwarf spheroidal galaxy from the DART Ca ii triplet survey star

Battaglia, G.
•
Tolstoy, E.
•
Helmi, A.
Show more
2011
Monthly Notices Of The Royal Astronomical Society

We use Very Large Telescope (VLT)/Fibre Large Array Multi Element Spectrograph (FLAMES) intermediate-resolution (R similar to 6500) spectra of individual red giant branch stars in the near-infrared Ca ii triplet (CaT) region to investigate the wide-area metallicity properties and internal kinematics of the Sextans dwarf spheroidal galaxy (dSph). Our final sample consists of 174 probable members of Sextans with accurate line-of-sight velocities (+/- 2 km s-1) and CaT [Fe/H] measurements (+/- 0.2 dex). We use the Mg i line at 8806.8 A as an empirical discriminator for distinguishing between probable members of the dSph (giant stars) and probable Galactic contaminants (dwarf stars). Sextans shows a similar chemodynamical behaviour to other Milky Way dSphs, with its central regions being more metal rich than the outer parts and with the more metal-rich stars displaying colder kinematics than the more metal-poor stars. Hints of a velocity gradient are found along the projected major axis and along an axis at position angle (PA) = 191 degrees, however, a larger and more spatially extended sample may be necessary to pin down the amplitude and direction of this gradient. We detect a cold kinematic substructure at the centre of Sextans, consistent with being the remnant of a disrupted very metal poor stellar cluster. We derive the most extended line-of-sight velocity dispersion profile for Sextans, out to a projected radius of 16. From Jeans modelling of the observed line-of-sight velocity dispersion profile we find that this is consistent with both a cored dark matter halo with large core radius and cuspy halo with low concentration. The mass within the last measured point is in the range 2-4 x 108 M-circle dot, giving very large mass-to-light ratios, from 460 to 920 (M/L)(V, circle dot).

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés