Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dissecting charge relaxation pathways in CdSe/CdS nanocrystals using femtosecond two-dimensional electronic spectroscopy
 
research article

Dissecting charge relaxation pathways in CdSe/CdS nanocrystals using femtosecond two-dimensional electronic spectroscopy

Jarrett, J. W.
•
Yi, C.
•
Stoll, T.
Show more
2017
Nanoscale

Exciton relaxation dynamics of CdSe and quasi-type-II CdSe/CdS core/shell nanocrystals were examined using femtosecond two-dimensional electronic spectroscopy (2DES). The use of 2DES allowed for determination of structure-specific and state-resolved carrier dynamics for CdSe nanocrystals formed with five, or fewer, CdS passivation monolayers (ML). For CdSe and CdSe/CdS nanocrystals formed with one through three MLs of CdS, excitation using broad bandwidth femtosecond visible laser pulses generated electron-hole pairs among the |X-1 > = 2.14 eV and |X-2 > = 2.27 eV exciton states. For both excitations, the electron is promoted to the lowest energy excited (1S(c)) conduction-band state and the hole is in the 1S(3/2) (X-1) or 2S(3/2) (X-2) valence-band state. Therefore, the relaxation dynamics of the hot hole were isolated by monitoring the-time-dependent amplitude of 2DES cross peaks. The time constant for hot hole relaxation within the CdSe valence band was 150 +/- 45 fs. Upon passivation by CdS, this hole relaxation time constant increased to 170 +/- 30 fs (CdSe/CdS-3ML). This small increase was attributed to the formation of a graded, or alloyed, interfacial region that precedes the growth of a uniform CdS capping layer. The small increase in hole relaxation time reflects the larger nanocrystal volume of the CdSe/CdS system with respect to the CdSe nanocrystal core. In contrast, the dynamics of larger core/shell nanocrystals (>= 4ML CdS) exhibited a picosecond buildup in 2DES cross-peak amplitude. This time-dependent response was attributed to interfacial hole transfer from CdS to CdSe valence-band states. Importantly, the 2DES data distinguish CdSe exciton relaxation from interfacial carrier transfer dynamics. In combination, isolation of structurally well-defined nanocrystals and state-resolved 2DES can be used to examine directly the influence of nanoscale structural modifications on electronic carrier dynamics, which are critical for developing nanocluster-based photonic devices.

  • Details
  • Metrics
Type
research article
DOI
10.1039/c7nr00654c
Web of Science ID

WOS:000397968400024

Author(s)
Jarrett, J. W.
Yi, C.
Stoll, T.
Rehault, J.
Oriana, A.  
Branchi, F.
Cerullo, G.
Date Issued

2017

Publisher

Royal Society of Chemistry

Published in
Nanoscale
Volume

9

Issue

13

Start page

4572

End page

4577

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LSU  
Available on Infoscience
May 1, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/136754
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés