Cell type prioritization in single-cell data
The cell types affected by biological perturbations in complex tissues are uncovered by single-cell analysis.
We present Augur, a method to prioritize the cell types most responsive to biological perturbations in single-cell data. Augur employs a machine-learning framework to quantify the separability of perturbed and unperturbed cells within a high-dimensional space. We validate our method on single-cell RNA sequencing, chromatin accessibility and imaging transcriptomics datasets, and show that Augur outperforms existing methods based on differential gene expression. Augur identified the neural circuits restoring locomotion in mice following spinal cord neurostimulation.
WOS:000550630500001
2021
39
30
34
REVIEWED