Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Fabrication and Characterization of Gate-All-Around Silicon Nanowires on Bulk Silicon
 
Loading...
Thumbnail Image
research article

Fabrication and Characterization of Gate-All-Around Silicon Nanowires on Bulk Silicon

Pott, V.  
•
Moselund, K. E.  
•
Bouvet, D.  
Show more
2008
IEEE Transactions on Nanotechnology

This paper reports on the top-down fabrication and electrical performance of silicon nanowire (SiNW) gate-all-around (GAA) n-type and p-type MOSFET devices integrated on bulk silicon using a local-silicon-on-insulator (SOI) process. The proposed local-SOI fabrication provides various nanowire cross sections: Omega-like, pentagonal, triangular, and circular, all controlled by isotropic etching using nitride spacers and silicon sacrificial oxidation. The reported top-down SiNW fabrication offers excellent control of wire doping and placement, as well as ohmic source and drain contacts. A particular feature of the process is the buildup of a tensile strain in all suspended nanowires, attaining values of few percents, reflected in stress values higher than 2-3 GPa. A very high yield (>90%) is obtained in terms of functionality of long-channel SiNW GAA mosfet. Device characteristics are reported from cryogenic temperature (<i>T</i> = 5 K) up to 150 <sup>deg</sup>C, and promising characteristics in terms of low-field electron mobility, threshold voltage control, and subthreshold slope are demonstrated. Low field mobility for electrons up to 850 cm<sup>2</sup> /Vmiddots is reported at room temperature in suspended devices with triangular cross sections; this mobility enhancement is explained by the process-induced tensile strain. In short, suspended SiNW GAA with small triangular cross sections, a single-electron transistor (SET) operation regime is highlighted at <i>T</i> = 5 K. This is attributed to a combined effect of strain and corner conduction in triangular channel cross sections, suggesting the possibility to hybridize CMOS and SET functions by a unique nanowire fabrication platform.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés