Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Design and implementation of a fs-Transmission Electron Microscope for time-resolved studies of strongly correlated systems and nanostructures
 
doctoral thesis

Design and implementation of a fs-Transmission Electron Microscope for time-resolved studies of strongly correlated systems and nanostructures

Piazza, Luca  
2015

The integration of ultrafast laser systems with transmission electron microscopes led to the extension of conventional electron microscopy (PINEM) to the 4th dimension, time, and new techniques as photon-induced near-field electron microscopy became available. This novel class of instruments offers to the experimenter the possibility to apply in one single instrument different and complementary ultrafast techniques as imaging, electron diffraction and energy-loss spectroscopy, allowing the investigation of the properties of matter with renovated efficiency obtaining time-resolved informations of both structural and electronic structures. In this thesis we report the design and implementation of the world-first ultrafast electron microscope based on a thermionic gun and we characterize the performances of the machine. Strongly correlated electron materials are an optimal playground for this instrument, the challenge being the ability to decouple the several degrees of freedom characterized by similar energy scale. We applied ultrafast diffraction and electron energy loss spectroscopy to the study of the metallic phase of a layered manganite, and we study the electronic and lattice response to a femtosecond photoexcitation. Taking advantage of the capabilities of PINEM to visualize electromagnetic fields at the ultrafast timescale we report the first simultaneous observation of the particle-like and wave-like behavior of a plasmon-polariton confined on the surface of a silver nanowire. Finally we present a discussion about the possible evolution of ultrafast electron microscopy, analyzing the feasibility of the integration of an ultrafast-transmission electron microscope with a free electron laser for performing high-energy excitations in solids.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH6601.pdf

Access type

openaccess

Size

8.96 MB

Format

Adobe PDF

Checksum (MD5)

3f83719393082458ef7d7923bb7a453b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés