Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Evaluating seismic retrofitting efficiency through ambient vibration tests and analytical models
 
conference paper not in proceedings

Evaluating seismic retrofitting efficiency through ambient vibration tests and analytical models

Reuland, Yves  
•
Garofano, Angelo  
•
Lestuzzi, Pierino  
Show more
2015
IABSE Conference – Structural Engineering: Providing Solutions to Global Challenges

Economic and environmental imperatives lead to an ever growing need to extend the service life of the existing building stock without putting the users at risk. In zones prone to moderate seismic hazard, many buildings were built without considering seismic actions. The design and assessment of efficient seismic retrofitting rely on physical models of the buildings. However, model errors resulting from simplifications and other assumptions might lead to a biased and thus unreliable diagnosis. Therefore, structural measurements are interpreted to reduce the uncertainty related to the ambiguous task of inferring the real structural response of existing buildings, even in the linear elastic range. This contribution includes the assessment of the retrofitting of an existing masonry building through ambient vibration field measurements. Measured frequencies and mode shapes are interpreted using an error-domain model-falsification framework that allows explicit representation of uncertainties related to modelling and measurement errors. A simple continuous Timoshenko cantilever beam, characterizing the linear elastic dynamic response of the building, is used to model the building. It is concluded that such interpretation of ambient vibration data is useful to assess the efficiency of seismic retrofitting.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IABSE2015_Reulandetal.pdf

Access type

openaccess

Size

863.03 KB

Format

Adobe PDF

Checksum (MD5)

43ae52347ad79d949b55ebba26de32df

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés