Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Exploiting Inherent Characteristic of Reversible Circuits for Faster Combinational Equivalence Checking
 
conference paper

Exploiting Inherent Characteristic of Reversible Circuits for Faster Combinational Equivalence Checking

Amaru, Luca
•
Gaillardon, Pierre-Emmanuel
•
Wille, Robert
Show more
2016
Proceedings of the Design, Automation & Test in Europe Conference (DATE)
Design, Automation & Test in Europe Conference (DATE)

Reversible circuits implement invertible logic functions. They are of great interest to cryptography, coding theory, interconnect design, computer graphics, quantum computing, and many other fields. As for conventional circuits, checking the combinational equivalence of two reversible circuits is an important but difficult (coNP-complete) problem. In this work, we present a new approach for solving this problem significantly faster than the state-of-the-art. For this purpose, we exploit inherent characteristics of reversible computation, namely bi-directional (invertible) execution and the XOR-richness of reversible circuits. Bi-directional execution allows us to create an identity miter out of two reversible circuits to be verified, which naturally encodes the equivalence checking problem in the reversible domain. Then, the abundant presence of XOR operations in the identity miter enables an efficient problem mapping into XOR-CNF satisfiability. The resulting XOR-CNF formulas are eventually more compact than pure CNF formulas and potentially easier to solve. As previously anticipated, experimental results show that our equivalence checking methodology is more than one order of magnitude faster, on average, than the state-of-the-art solution based on established CNF-formulation and standard SAT solvers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

LA_DATE16.pdf

Access type

openaccess

Size

316.84 KB

Format

Adobe PDF

Checksum (MD5)

f910b8e40ab7b191e30b2d3e9c00553c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés