Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Revising the common understanding of metamagnetism in the molecule-based bisdithiazolyl BDTMe compound
 
research article

Revising the common understanding of metamagnetism in the molecule-based bisdithiazolyl BDTMe compound

Climent, Claudia
•
Vela, Sergi
•
Jornet-Somoza, Joaquim
Show more
June 21, 2019
Physical Chemistry Chemical Physics

The BDTMe molecule-based material is the first example of a thiazyl radical to exhibit metamagnetic behavior. Contrary to the common idea that metamagnetism occurs in low-dimensional systems, it is found that BDTMe magnetic topology consists of a complex 3D network of almost isotropic ferromagnetic spin-ladders that are coupled ferromagnetically and further connected by some weaker antiferromagnetic interactions. Calculated magnetic susceptibility xT(T) data is in agreement with experiment. Calculated M(H) data clearly show the typical sigmoidal shape of a metamagnet at temperatures below 2 K. The calculated critical field becomes more apparent in the dM/dH(H) plot, being in very good agreement with experiment. Our computational study concludes that the magnetic topology of BDTMe is preserved throughout the entire experimental range of temperatures (0-100 K). Accordingly, the ground state is the same irrespective of the temperature at which we study the BDTMe crystal. Revising the commonly accepted understanding of a metamagnet explained as ground state changing from antiferromagnetic to ferromagnetic, the Boltzmann population of the different states is here suggested to be the key concept: at 2 K the ground singlet state has more weight (24%) than at 10 K (1.5%), where excited states have an important role. Changes in the antiferromagnetic interactions that couple the ferromagnetic skeleton of BDTMe will directly affect the population of the distinct states that belong to a given magnetic topology and thus its magnetic response. Accordingly, this strategy could be valid for a wide range of bisdithiazolyl BDT-compounds whose magnetism can be tuned by means of weak antiferromagnetic interactions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

c9cp00467j.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY-NC

Size

3.2 MB

Format

Adobe PDF

Checksum (MD5)

4f8cc0cf5a10c2ef3969900f0b7b410b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés