Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Advanced Control Strategy for Solar Combisystems
 
Loading...
Thumbnail Image
conference paper

Advanced Control Strategy for Solar Combisystems

Prud'homme, T.
•
Gillet, D.  
2002
EuroSun 2002

Solar combisystems are solar heating installations providing space heating as well as domestic hot water for the inhabitants of the building. The energy sources are solar energy as well as an auxiliary source, gas or oil typically. This paper describes the advanced control strategy that enables the energetic optimization of the building and the combisystem as a whole. This strategy also aims at maximizing the degree of comfort in terms of temperature variation. It has been implemented on a solar combisystem manufactured in Switzerland. The strategy chosen is a predictive control strategy. It computes one-day optimal profiles for the flow-rate in the collector loop and for the power to be dissipated in the building. To do so, the dynamical models of the combisystem and of the building have been derived. Weather forecasts are also required to implement this predictive control strategy. The weather forecasts are provided on-line by the Swiss Meteorological Institute (SMI). To make this strategy robust with respect to modeling errors and discrepancies between weather forecasts and actual weather, a convenient closed-loop implementation of the optimal profiles has been developed. In addition to applying the optimal profiles computed for the flow rate in the collector loop and the power dissipated in the building, the tracking of optimal temperature profiles is also implemented. The proposed strategy has led to significant improvements in terms of energy savings and comfort and has proven to be very robust. It has been successfully implemented on a pilot plant and its commercialization is being carried out at the moment.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

fulltext.pdf

Access type

openaccess

Size

269.34 KB

Format

Adobe PDF

Checksum (MD5)

643bf1b1f594ff661f0946387a831776

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés