A New Hybrid Technology for Planar Fluxgate Sensor Fabrication
We have adapted a new printed circuit board (PCB) technology to the fabrication of ultraflat and sensitive fluxgate magnetic field sensors. The two outer layers of the PCB stack compose the electrical windings of fluxgates, while the inner layer is made of a micro-patterned amorphous magnetic ribbon with extremely high relative magnetic permeability (µ_r=100 000). Two basic configurations were considered: one based on a toroidal magnetic core and the other on a rectangular core with and without an air gap. The field response and sensitivity of the fluxgate devices have been studied as a function of the gap length, the excitation current, and excitation frequency. Compared to fluxgate sensors of similar size, a relatively high sensitivity of 60 V/T was found at 30 kHz for a five-winding detection coil wound around a rectangular E-shaped magnetic core. This high performance is primarily attributable to the high-permeability magnetic core. The results clearly show the potential of this fluxgate device for application as a magnetic sensor.
39.pdf
openaccess
836.54 KB
Adobe PDF
898cfc00b1bf753a78c7f0987d7a20d7