Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Kairos: Preemptive Data Center Scheduling Without Runtime Estimates
 
conference paper

Kairos: Preemptive Data Center Scheduling Without Runtime Estimates

Delgado, Pamela  
•
Didona, Diego  
•
Dinu, Florin  
Show more
October 11, 2018
Proceedings of the 9th ACM Symposium on Cloud Computing
9th ACM Symposium on Cloud Computing

The vast majority of data center schedulers use task runtime estimates to improve the quality of their scheduling decisions. Knowledge about runtimes allows the schedulers, among other things, to achieve better load balance and to avoid head-of-line blocking. Obtaining accurate runtime estimates is, however, far from trivial, and erroneous estimates lead to sub-optimal scheduling decisions. Techniques to mitigate the effect of inaccurate estimates have shown some success, but the fundamental problem remains. This paper presents Kairos, a novel data center scheduler that assumes no prior information on task runtimes. Kairos introduces a distributed approximation of the Least Attained Service (LAS) scheduling policy. Kairos consists of a centralized scheduler and per-node schedulers. The per-node schedulers implement LAS for tasks on their node, using preemption as necessary to avoid head-of-line blocking. The centralized scheduler distributes tasks among nodes in a manner that balances the load and imposes on each node a workload in which LAS provides favorable performance. We have implemented Kairos in YARN. We compare its performance against the YARN FIFO scheduler and Big-C, an open-source state-of-the-art YARN-based scheduler that also uses preemption. Compared to YARN FIFO, Kairos reduces the median job completion time by 73% and the 99th percentile by 30%. Compared to Big-C, the improvements are 37% for the median and 57% for the 99th percentile. We evaluate Kairos at scale by implementing it in the Eagle simulator and comparing its performance against Eagle. Kairos improves the 99th percentile of short job completion times by up to 55% for the Google trace and 85% for the Yahoo trace.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

socc18-final186.pdf

Access type

openaccess

Size

711.3 KB

Format

Adobe PDF

Checksum (MD5)

4c9b5b519a5d7e637592ecc3f97c4b07

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés