Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Electroacoustic Polymer Microchip as an Alternative to Quartz Crystal Microbalance for Biosensor Development
 
research article

Electroacoustic Polymer Microchip as an Alternative to Quartz Crystal Microbalance for Biosensor Development

Gamby, J
•
Lazerges, M
•
Girault, H H  
Show more
2008
Analytical Chemistry

Laser photoablation of poly(ethylene terephthalate) (PET), a flexible dielectric organic polymer, was used to design an acoustic miniaturized DNA biosensor. The microchip device includes a 100-μm-thick PET layer, with two microband electrodes patterned in photoablated microchannels on one side and a depressed photoablated disk decorated by gold sputtered layer on the other side. Upon application of an electric signal between the two electrodes, an electroacoustic resonance phenomenon at ∼30 MHz was established through the microelectrodes/PET/ gold layer interface. The electroacoustic resonance response was fitted with a series RLC motional arm in parallel with a static C0 arm of a Buttlerworth-Van Dyke equivalent circuit: admittance spectra recorded after successive cycles of DNA hybridization on the gold surface showed reproducible changes on R, L, and C parameters. The same hybridizations runs were performed concomitantly on a 27-MHz (9 MHz, third overtone) quartz crystal microbalance in order to validate the PET device developed for bioanalysis applications. The electroacoustic PET device, ∼100 times smaller than a microbalance quartz crystal, is interesting for the large-scale integration of acoustic sensors in biochips.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ac800443u.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

397.18 KB

Format

Adobe PDF

Checksum (MD5)

39a121830cfe35f35154a2b5882d9fb8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés