Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Large Eddy Simulation of turbulent compressible flow in heated curved square duct
 
doctoral thesis

Large Eddy Simulation of turbulent compressible flow in heated curved square duct

Münch, Cecile  
2005

Characteristics of turbulent flow and heat transfers which develop in a heated duct are studied through Large Eddy Simulation (LES) technics . Cooling channels of rocket engines constitute one of the industrial applications. We here consider a simplified geometry consisting of a curved duct of rectangular cross section. The unsteady filtered Navier-Stokes equations are solved by means of a compact numerical scheme, predictor-corrector, second order in time, fourth in space. The subgrid scale model used is the selective structure function model. The results bring to light the development of a strong secondary flow linked with the radial pressure gradient which develops in the curved part. This secondary flow takes the shape of two counter rotating cells of Ekman type close to the convex wall. Close to the concave wall, unsteady vortices of Görtler type arise. This complex flow is thus characterised by sweeps and ejections directly linked with the heat transfer between the flow and the heated curved walls. The Nusselt number undergoes strong transverse variations which might yield material alterations of the heated wall. We evaluate the influence of the geometrical and physical parameters on the flow and the heat exchanges before proposing a solution to homogenize the heat transfers by means of passive control.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

these_munch.pdf

Access type

restricted

Size

21.35 MB

Format

Adobe PDF

Checksum (MD5)

3aa6fd1f966c2fad7cc287c824b5696b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés