Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q > 4
 
research article

Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q > 4

Gorbenko, Victor
•
Rychkov, Slava
•
Zan, Bernardo  
November 1, 2018
Scipost Physics

We study complex CFTs describing fixed points of the two-dimensional Q-state Potts model with Q > 4. Their existence is closely related to the weak first-order phase transition and the "walking" renormalization group (RG) behavior present in the real Potts model at Q > 4. The Potts model, apart from its own significance, serves as an ideal playground for testing this very general relation. Cluster formulation provides nonperturbative definition for a continuous range of parameter Q, while Coulomb gas description and connection to minimal models provide some conformal data of the complex CFTs. We use one and two-loop conformal perturbation theory around complex CFTs to compute various properties of the real walking RG flow. These properties, such as drifting scaling dimensions, appear to be common features of the QFTs with walking RG flows, and can serve as a smoking gun for detecting walking in Monte Carlo simulations. The complex CFTs discussed in this work are perfectly well defined, and can in principle be seen in Monte Carlo simulations with complexified coupling constants. In particular, we predict a pair of S-5-symmetric complex CFTs with central charges c approximate to 1.138 +/- 0.021i describing the fixed points of a 5-state dilute Potts model with complexified temperature and vacancy fugacity. Copyright V. Gorbenko et al.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SciPostPhys_5_5_050.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.13 MB

Format

Adobe PDF

Checksum (MD5)

6b0eb55964dd1ccdfe3fa3c022f39258

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés