Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Extrapolation for Large-batch Training in Deep Learning
 
conference paper

Extrapolation for Large-batch Training in Deep Learning

Lin, Tao  
•
Kong, Lingjing
•
Stich, Sebastian Urban  
Show more
2020
Proceedings of the 37th International Conference on Machine Learning
ICML 2020 37th International Conference on Machine Learning

Deep learning networks are typically trained by Stochastic Gradient Descent (SGD) methods that iteratively improve the model parameters by estimating a gradient on a very small fraction of the training data. A major roadblock faced when increasing the batch size to a substantial fraction of the training data for reducing training time is the persistent degradation in performance (generalization gap). To address this issue, recent work propose to add small perturbations to the model parameters when computing the stochastic gradients and report improved generalization performance due to smoothing effects. However, this approach is poorly understood; it requires often model-specific noise and fine-tuning. To alleviate these drawbacks, we propose to use instead computationally efficient extrapolation (extragradient) to stabilize the optimization trajectory while still benefiting from smoothing to avoid sharp minima. This principled approach is well grounded from an optimization perspective and we show that a host of variations can be covered in a unified framework that we propose. We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer. We demonstrate that in a variety of experiments the scheme allows scaling to much larger batch sizes than before whilst reaching or surpassing SOTA accuracy.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

lin20b-supp.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

Copyright

Size

2.89 MB

Format

Adobe PDF

Checksum (MD5)

66352f93ac273a387f8961a3efc05d77

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés