Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Efficient inference for spatial extreme value processes associated to log-Gaussian random functions
 
research article

Efficient inference for spatial extreme value processes associated to log-Gaussian random functions

Wadsworth, Jennifer L.  
•
Tawn, Jonathan A.
2014
Biometrika

Max-stable processes arise as the only possible nontrivial limits for maxima of affinely normalized identically distributed stochastic processes, and thus form an important class of models for the extreme values of spatial processes. Until recently, inference for max-stable processes has been restricted to the use of pairwise composite likelihoods, due to intractability of higher-dimensional distributions. In this work we consider random fields that are in the domain of attraction of a widely used class of max-stable processes, namely those constructed via manipulation of log-Gaussian random functions. For this class, we exploit limiting d-dimensional multivariate Poisson process intensities of the underlying process for inference on all d-vectors exceeding a high marginal threshold in at least one component, employing a censoring scheme to incorporate information below the marginal threshold. We also consider the d-dimensional distributions for the equivalent max-stable process, and perform full likelihood inference by exploiting the methods of Stephenson & Tawn (2005), where information on the occurrence times of extreme events is shown to dramatically simplify the likelihood. The Stephenson-Tawn likelihood is in fact simply a special case of the censored Poisson process likelihood. We assess the improvements in inference from both methods over pairwise likelihood methodology by simulation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ast042.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

260.35 KB

Format

Adobe PDF

Checksum (MD5)

9ad83c5aa21a9f869c1e2b3e82abe02b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés