Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Study on rock mass boreability by TBM penetration test under different in situ stress conditions
 
Loading...
Thumbnail Image
research article

Study on rock mass boreability by TBM penetration test under different in situ stress conditions

Yin, L. J.
•
Gong, Q. M.
•
Zhao, J.  
2014
Tunnelling And Underground Space Technology

Rock mass boreability is a comprehensive parameter reflecting the interaction between rock mass and a tunnel boring machine (TBM). Many factors including rock mass conditions, TBM specifications and operation parameters influence rock mass boreability. In situ stress, as one of the important properties of rock mass conditions, has not been studied specifically for rock mass boreability in TBM tunneling. In this study, three sets of TBM penetration tests are conducted with different in situ stress conditions in three TBM tunnels of the Jinping II Hydropower Station. The correlation between TBM operation parameters collected during the tests and the rock mass boreability index is analyzed to reveal the influence of in situ stress on rock mass boreability and TBM excavation process. The muck produced by each test step is collected and analyzed by the muck sieve test. The results show that in situ stress not only influences the rock mass boreability but also the rock fragmentation process under TBM cutters. If the in situ stress is high enough to cause the stress-induced failure at the tunnel face, it facilitates rock fragmentation by TBM cutters and the corresponding rock boreability index decreases. Otherwise, the in situ stress restrains rock fragmentation by TBM cutters and the rock mass boreablity index increases. Through comparison of the boreability index predicted by the Rock Mass Characteristics (RMC) prediction model with the boreability index calculated from the penetration test results, the influence degree of different in situ stresses for rock mass boreability is obtained. (C) 2014 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.tust.2014.06.002
Web of Science ID

WOS:000342479500040

Author(s)
Yin, L. J.
•
Gong, Q. M.
•
Zhao, J.  
Date Issued

2014

Publisher

Pergamon-Elsevier Science Ltd

Published in
Tunnelling And Underground Space Technology
Volume

43

Start page

413

End page

425

Subjects

In situ stress

•

TBM penetration test

•

Rock mass boreability

•

TBM performance

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMR  
Available on Infoscience
November 13, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108613
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés