Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. GIPSY: Joining Spatial Datasets with Contrasting Density
 
conference paper

GIPSY: Joining Spatial Datasets with Contrasting Density

Pavlovic, Mirjana  
•
Tauheed, Farhan  
•
Heinis, Thomas  
Show more
2013
Proceedings of the 25th International Conference on Scientific and Statistical Database Management
International Conference on Scientific and Statistical Database Management

Many scientific and geographical applications rely on the efficient execution of spatial joins. Past research has produced several efficient spatial join approaches and while each of them can join two datasets, the problem of efficiently joining two datasets with contrasting density, i.e., with the same spatial extent but with a wildly different number of spatial elements, has so far been overlooked. State-of-the-art data-oriented spatial join approaches (e.g., based on the R-Tree) suffer from degraded performance due to overlap, whereas space-oriented approaches excessively read data from disk.

In this paper we develop GIPSY, a novel approach for the spatial join of two datasets with contrasting density. GIPSY uses fine-grained data-oriented partitioning and thus only retrieves the data needed for the join. At the same time it avoids the overlap related problems associated with data-oriented partitioning by using a crawling approach, i.e., without using a hierarchical tree. Our experiments show that GIPSY outperforms state-of-the-art disk-based spatial join algorithms by a factor of 2 to 18 and is particularly efficient when joining a dense dataset with several sparse datasets.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

gipsy.pdf

Access type

openaccess

Size

866.52 KB

Format

Adobe PDF

Checksum (MD5)

4f9c238d39c5430fd5f8bdc7d89425d0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés