Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01
 
research article

Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01

Revaz, Tristan  
•
Lin, Mou  
•
Porte-Agel, Fernando  
November 1, 2020
Energies

A numerical framework for the aerodynamic characterization of wind turbine airfoils is developed and applied to the miniature wind turbine WiRE-01. The framework is based on a coupling between wall-resolved large eddy simulation (LES) and application of the blade element momentum theory (BEM). It provides not only results for the airfoil aerodynamics but also for the wind turbine, and allows to cover a large range of turbine operating conditions with a minimized computational cost. In order to provide the accuracy and the flexibility needed, the unstructured finite volume method (FVM) and the wall-adapting local eddy viscosity (WALE) model are used within the OpenFOAM toolbox. With the purpose of representing the turbulence experienced by the blade sections of the turbine, a practical turbulent inflow is proposed and the effect of the inflow turbulence on the airfoil aerodynamic performance is studied. It is found that the consideration of the inflow turbulence has a strong effect on the airfoil aerodynamic performance. Through the application of the framework to WiRE-01 miniature wind turbine, a comprehensive characterization of the airfoil used in this turbine is provided, simplifying future studies. In the same time, the numerical results for the turbine are validated with experimental results and good consistency is found. Overall, the airfoil and turbine designs are found to be well optimized, even if the effective angle of attack of the blades should be reduced close to the hub.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

energies-13-05612.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.5 MB

Format

Adobe PDF

Checksum (MD5)

0fa61cda83d621974babca9347f3f985

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés