In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system
Direct collection of extracellular fluid (ECF) plays a central role in the monitoring of neurological disorders. Current approaches using microdialysis catheters are however drastically limited in term of temporal resolution. Here we show a functional in vivo validation of a droplet collection system included at the tip of a neural probe. The system comprises an advanced droplet formation mechanism which enables the collection of neurochemicals present in the brain ECF at high-temporal resolution. The probe was implanted in a rat brain and could successfully collect fluid samples organized in a train of droplets. A microfabricated target plate compatible with most of the surface-based detection methods was specifically developed for sample analysis. The time-resolved brain-fluid samples are analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results provide a time evolution picture of the cerebral tissues neurochemical composition for selected elements known for their involvement in neurodegenerative diseases.
s41467-017-01419-1.pdf
Publisher's version
restricted
1.39 MB
Adobe PDF
11706bb1658839974392db28d16eac86