Wave Pipelining for Majority-based Beyond-CMOS Technologies
The performance of some emerging nanotechnolo- gies benefits from wave pipelining. The design of such circuits re- quires new models and algorithms. Thus we show how Majority- Inverter Graphs (MIG) can be used for this purpose and we extend the related optimization algorithms. The resulting designs have increased throughput, something that has traditionally been a weak point for the majority of non-charge-based technologies. We benchmark the algorithm on MIG netlists with three different technologies, Spin Wave Devices (SWD), Quantum-dot Cellular Automata (QCA), and NanoMagnetic Logic (NML). We find that the wave pipelined version of the netlists have an improvement in throughput over power of 23×, 13×, and 5× for SWD, QCA, and NML, respectively. In terms of throughput over area ratio, the improvement is 5×, 8×, and 3×, respectively.
2017_date_4.pdf
openaccess
940.84 KB
Adobe PDF
db9222435937fa8ffffeae4180fed37d