Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adaptive R-Peak Detection on Wearable ECG Sensors for High-Intensity Exercise
 
research article

Adaptive R-Peak Detection on Wearable ECG Sensors for High-Intensity Exercise

De Giovanni, Elisabetta  
•
Teijeiro, Tomas
•
Millet, Gregoire P.
Show more
September 9, 2022
IEEE Transactions on Biomedical Engineering

Objective: Continuous monitoring of biosignals via wearable sensors has quickly expanded in the medical and wellness fields. At rest, automatic detection of vital parameters is generally accurate. However, in conditions such as high-intensity exercise, sudden physiological changes occur to the signals, compromising the robustness of standard algorithms. Methods: Our method, called BayeSlope, is based on unsupervised learning, Bayesian filtering, and non-linear normalization to enhance and correctly detect the R peaks according to their expected positions in the ECG. Furthermore, as BayeSlope is computationally heavy and can drain the device battery quickly, we propose an online design that adapts its robustness to sudden physiological changes, and its complexity to the heterogeneous resources of modern embedded platforms. This method combines BayeSlope with a lightweight algorithm, executed in cores with different capabilities, to reduce the energy consumption while preserving the accuracy. Results: BayeSlope achieves an F1 score of 99.3% in experiments during intense cycling exercise with 20 subjects. Additionally, the online adaptive process achieves an F1 score of 99% across five different exercise intensities, with a total energy consumption of 1.55 ± 0.54 mJ. Conclusion: We propose a highly accurate and robust method, and a complete energy-efficient implementation in a modern ultra-low-power embedded platform to improve R peak detection in challenging conditions, such as during high-intensity exercise. Significance: The experiments show that BayeSlope outperforms state-of-the-art QRS detectors up to 8.4% in F1 score, while our online adaptive method can reach energy savings up to 38.7% on modern heterogeneous wearable platforms.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Adaptive_R-Peak_Detection_on_Wearable_ECG_Sensors_for_High-Intensity_Exercise.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.59 MB

Format

Adobe PDF

Checksum (MD5)

d58ba521b4c73abde5c32fe5c5ef8702

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés