Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes: Expression of two different monocarboxylate transporters in astroglial cells and neurons
The transport of lactate is an essential part of the concept of metabolic coupling between neurons and glia. Lactate transport in primary cultures of astroglial cells was shown to be mediated by a single saturable transport system with a Km value for lactate of 7.7 mM and a Vmax value of 250 nmol/(min x mg of protein). Transport was inhibited by a variety of monocarboxylates and by compounds known to inhibit monocarboxylate transport in other cell types, such as alpha-cyano-4-hydroxycinnamate and p-chloromercurbenzenesulfonate. Using reverse transcriptase-polymerase chain reaction and Northern blotting, the presence of mRNA coding for the monocarboxylate transporter 1 (MCT1) was demonstrated in primary cultures of astroglial cells. In contrast, neuron-rich primary cultures were found to contain the mRNA coding for the monocarboxylate transporter 2 (MCT2). MCT1 was cloned and expressed in Xenopus laevis oocytes. Comparison of lactate transport in MCT1 expressing oocytes with lactate transport in glial cells revealed that MCT1 can account for all characteristics of lactate transport in glial cells. These data provide further molecular support for the existence of a lactate shuttle between astrocytes and neurons.
9374487
1997
272
48
30096
102
REVIEWED