Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nodal discontinuous Galerkin methods on graphics processors
 
Loading...
Thumbnail Image
research article

Nodal discontinuous Galerkin methods on graphics processors

Kloeckner, A.
•
Warburton, T.
•
Bridge, J.
Show more
2009
Journal of Computational Physics

Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in an element-local way, with weak penalty-based element-to-element coupling. The resulting locality in memory access is one of the factors that enables DG to run on off-the-shelf, massively parallel graphics processors (GPUs). In addition, DG's high-order nature lets it require fewer data points per represented wavelength and hence fewer memory accesses, in exchange for higher arithmetic intensity. Both of these factors work significantly in favor of a GPU implementation of DG. Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for Maxwell's equations on a general 3D unstructured grid by a factor of around 50 relative to a serial computation on a current-generation CPU. In many cases, our algorithms exhibit full use of the device's available memory bandwidth. Example computations achieve and surpass 200 gigaflops/s of net application-level floating point work. In this article, we describe and derive the techniques used to reach this level of performance. In addition, we present comprehensive data on the accuracy and runtime behavior of the method. (C) 2009 Elsevier Inc. All rights reserved.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/j.jcp.2009.06.041
Web of Science ID

WOS:000273389500001

Author(s)
Kloeckner, A.
•
Warburton, T.
•
Bridge, J.
•
Hesthaven, Jan S.  
Date Issued

2009

Publisher

Elsevier

Published in
Journal of Computational Physics
Volume

228

Issue

21

Start page

7863

End page

7882

Subjects

Discontinuous Galerkin

•

High order

•

GPU

•

Parallel computation

•

Many-core

•

Maxwell's equations

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
MCSS  
Available on Infoscience
November 12, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/96937
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés