Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Towards Self-regeneration: Exploring the Limits of Protein Synthesis in the Protein Synthesis Using Recombinant Elements (PURE) Cell-free Transcription-Translation System
 
Loading...
Thumbnail Image
research article

Towards Self-regeneration: Exploring the Limits of Protein Synthesis in the Protein Synthesis Using Recombinant Elements (PURE) Cell-free Transcription-Translation System

Ganesh, Ragunathan B.  
•
Maerkl, Sebastian J.  
July 27, 2024
ACS Synthetic Biology

Self-regeneration is a key function of living systems that needs to be recapitulated in vitro to create a living synthetic cell. A major limiting factor for protein self-regeneration in the PURE cell-free transcription-translation system is its high protein concentration, which far exceeds the system's protein synthesis rate. Here, we were able to drastically reduce the nonribosomal PURE protein concentration up to 97.3% while increasing protein synthesis efficiency. Although crowding agents were not effective in the original PURE formulation, we found that in highly dilute PURE formulations, addition of 6% dextran considerably increased protein synthesis rate and total protein yield. These new PURE formulations will be useful for many cell-free synthetic biology applications, and we estimate that PURE can now support the complete self-regeneration of all 36 nonribosomal proteins, which is a critical step toward the development of a universal biochemical constructor and living synthetic cell.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés