Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Distributed bounded-error state estimation for partitioned systems based on practical robust positive invariance
 
research report

Distributed bounded-error state estimation for partitioned systems based on practical robust positive invariance

Riverso, S.
•
Rubini, D.
•
Ferrari-Trecate, G.
2013

We propose a partition-based state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that exploits suitable pieces of information from parent subsystems. Moreover, differently from methods based on moving horizon estimation, our approach does not require the on-line solution to optimization problems. Our state-estimation scheme, that is based on the notion of practical robust positive invariance developed in (Rakovic et al., 2011), also guarantees satisfaction of constraints on local estimation errors and it can be updated with a limited computational effort when subsystems are added or removed.

  • Details
  • Metrics
Type
research report
Author(s)
Riverso, S.
Rubini, D.
Ferrari-Trecate, G.
Date Issued

2013

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SCI-STI-GFT  
Available on Infoscience
January 10, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/132583
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés