Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Resolving the spin splitting in the conduction band of monolayer MoS2
 
research article

Resolving the spin splitting in the conduction band of monolayer MoS2

Marinov, Kolyo  
•
Avsar, Ahmet  
•
Watanabe, Kenji
Show more
2017
Nature Communications

Time-reversal symmetry and broken spin degeneracy enable the exploration of spin and valley quantum degrees of freedom in monolayer transition-metal dichalcogenides. While the strength of the large spin splitting in the valance band of these materials is now well-known, probing the 10-100 times smaller splitting in the conduction band poses significant challenges. Since it is easier to achieve n-type conduction in most of them, resolving the energy levels in the conduction band is crucial for the prospect of developing new spintronic and valleytronic devices. Here, we study quantum transport in high mobility monolayer MoS2 devices where we observe well-developed quantized conductance in multiples of e(2)/h in zero magnetic field. We extract a sub-band spacing energy of 0.8 meV. The application of a magnetic field gradually increases the interband spacing due to the valley-Zeeman effect. Here, we extract a g-factor of similar to 2.16 in the conduction band of monolayer MoS2.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Nature Communications (2017) Marinov et al - Resolving the spin splitting in the conduction band of monolayer MoS2.pdf

Access type

openaccess

Size

1.74 MB

Format

Adobe PDF

Checksum (MD5)

c39b6a841bdff466fca3af82bd460428

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés