Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hydrogen Dynamics in Nanoconfined Lithiumborohydride
 
research article

Hydrogen Dynamics in Nanoconfined Lithiumborohydride

Remhof, Arndt
•
Mauron, Philippe  
•
Zuettel, Andreas  
Show more
2013
Journal of Physical Chemistry C

Lithiumborohydride (LiBH4) contains 18.5 wt % hydrogen and exhibits a structural phase transition (orthorhombic→ hexagonal) at 381 K, which is associated with a large increase in hydrogen and lithium mobility in the solid. Confining metal hydrides in a nanoporous matrix may change the hydrogen desorption kinetics and reversibility, and influence phase equilibria. The hydrogen mobility in nanoconfined LiBH4 was studied using inelastic and quasielastic neutron scattering. Confinement in nanoporous carbon leads to a greater anion mobility and a reduced activation energy of 8 kJ/mol at room temperature as compared to 17.3 kJ/mol in bulk LiBH4. In the nanoconfined phase, the mobility resembles that of the high-temperature bulk phase, and no distinct phase transition was observed. However, a substantial fraction of the hydrogen is immobile, leading to effectively reduced anion dynamics as compared to the bulk high-temperature phase. We tentatively attribute these effects to lattice distortions due to the finite pore size, and to thermally induced stress leading to a loss in long-range order and an increase in dynamical disorder, as supported by first principle calculations. © 2013 American Chemical Society.

  • Details
  • Metrics
Type
research article
DOI
10.1021/jp311064d
Web of Science ID

WOS:000318211800012

Author(s)
Remhof, Arndt
Mauron, Philippe  
Zuettel, Andreas  
Embs, Jan Peter
Lodziana, Zbigniew
Ramirez-Cuesta, A. J.
Ngene, Peter
de Jongh, Petra
Date Issued

2013

Published in
Journal of Physical Chemistry C
Volume

117

Issue

8

Start page

3789

End page

3798

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMER  
Available on Infoscience
March 3, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/112009
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés