Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Graph-Constrained Group Testing
 
Loading...
Thumbnail Image
conference paper

Graph-Constrained Group Testing

Cheraghchi, Mahdi
•
Karbasi, Amin  
•
Mohajerzefreh, Soheil
Show more
2012
IEEE Transactions on Information Theory
IEEE International Symposium on Information Theory

Non-adaptive group testing involves grouping arbitrary subsets of $n$ items into different pools. Each pool is then tested and defective items are identified. A fundamental question involves minimizing the number of pools required to identify at most $d$ defective items. Motivated by applications in network tomography, sensor networks and infection propagation, a variation of group testing problems on graphs is formulated. Unlike conventional group testing problems, each group here must conform to the constraints imposed by a graph. For instance, items can be associated with vertices and each pool is any set of nodes that must be path connected. In this paper, a test is associated with a random walk. In this context, conventional group testing corresponds to the special case of a complete graph on $n$ vertices. For interesting classes of graphs a rather surprising result is obtained, namely, that the number of tests required to identify $d$ defective items is substantially similar to what required in conventional group testing problems, where no such constraints on pooling is imposed. Specifically, if $T(n)$ corresponds to the mixing time of the graph $G$, it is shown that with $m=O(d^2T^2(n)\log(n/d))$ non-adaptive tests, one can identify the defective items. Consequently, for the Erd\H{o}s-R'enyi random graph $G(n,p)$, as well as expander graphs with constant spectral gap, it follows that $m=O(d^2\log^3n)$ non-adaptive tests are sufficient to identify $d$ defective items. Next, a specific scenario is considered that arises in network tomography, for which it is shown that $m=O(d^3\log^3n)$ non-adaptive tests are sufficient to identify $d$ defective items. Noisy counterparts of the graph constrained group testing problem are considered, for which parallel results are developed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

GCGT_IT_final.pdf

Access type

openaccess

Size

513.74 KB

Format

Adobe PDF

Checksum (MD5)

a76314053f603b0f96ed3a6a85108634

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés