Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. How Recurrent Dynamics Explain Crowding
 
Loading...
Thumbnail Image
conference poster not in proceedings

How Recurrent Dynamics Explain Crowding

Clarke, Aaron Michael  
•
Herzog, Michael  
2012
35th European Conference on Visual Perception

In crowding, flankers impair target perception. For example, Vernier offset discrimination deteriorates when the Vernier is flanked by parallel lines. Pooling models explain crowding by averaging neural activity over both Vernier and flankers. Recently, however, it was shown that adding flankers can reduce crowding almost to baseline levels, contrary to predictions of pooling models. Here, we show that a Wilson-Cowan type model can explain both classical, local and recent, global aspects of crowding. The key feature of the model is spread of inhibitory neural activity across similar elements. For example, crowding strength decreases with more long flankers because these similar, long flankers inhibit each other dynamically and, thus, reduce inhibition on the dissimilar Vernier. Since the Vernier is similar to the equal-length flankers, it is inhibited. For this reason, and in accordance with psychophysical data, crowding does not vary with the number of equal-length flankers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ClarkeECVP2012v5.pptx

Access type

openaccess

Size

2.31 MB

Format

Microsoft Powerpoint XML

Checksum (MD5)

85b9802ee86954b91ebb6fb7b4d4c367

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés