Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. An octree-based adaptive semi-Lagrangian free surface flow solver
 
Loading...
Thumbnail Image
doctoral thesis

An octree-based adaptive semi-Lagrangian free surface flow solver

Laurmaa, Viljami Henrikki  
2016

A numerical method based on an adaptive octree space discretization for the simulation of 3D free-surface fluid flows is proposed. The Navier-Stokes equations are solved with a time-splitting scheme, which decouples advection from diffusion/incompressibility. The advection step is solved with a semi-Lagrangian VOF-based scheme on the octree. An interface prediction algorithm is used to refine the octree at the predicted location of the interface in order to ensure detail preservation. Subsequently, the fluid is advected and a coarsening algorithm adapts the mesh to avoid excess refinement in non-interfacial regions. SLIC and decompression algorithms are used for post-processing to limit numerical diffusion and correct numerical compression of the VOF function. The octree scheme allows anisotropy, refinement of interfacial cells to an arbitrary level and supports arbitrary complex domains. It does not require a 2:1 cell size ratio condition between adjacent cells. The octree is then coupled with a tetrahedral mesh on which we solve the second step of the splitting algorithm, the Stokes' equations. Numerical validation is done on both advection benchmark test cases and results are compared with the uniform cell grid scheme. Paddle-generated water waves are also simulated and results are compared with experimental water wave profile measurements. \bigskip First order finite element stabilization schemes for the time-dependent Stokes' equations are studied. A unified proof of stability and convergence of velocity and pressure for consistent and non-consistent PSPG schemes for the time-dependent Stokes' equations is given with explicit dependence on viscosity and stabilization parameter. The link between bubble enrichment and Pressure Stabilized Petrov-Galerkin (PSPG) schemes in the context of time-dependent Stokes' equations is discussed and two bubble-based PSPG-type schemes are studied. Different possibilities for stabilization parameters are discussed. Numerical comparisons are done to determine stability, convergence and conditioning issues associated with different PSPG schemes, bubble-based schemes and local pressure projection schemes in different settings.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH7011.pdf

Access type

openaccess

Size

18.17 MB

Format

Adobe PDF

Checksum (MD5)

af7e63c7ee2b6077263ce7fe04d8fe4d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés