Non-Discriminatory Machine Learning through Convex Fairness Criteria
Biased decision making by machine learning systems is increasingly recognized as an important issue. Recently, techniques have been proposed to learn non-discriminatory classifiers by enforcing constraints in the training phase. Such constraints are either non-convex in nature (posing computational difficulties) or don't have a clear probabilistic interpretation. Moreover, the techniques offer little understanding of the more subjective notion of fairness. In this paper, we introduce a novel technique to achieve nondiscrimination without sacrificing convexity and probabilistic interpretation. Our experimental analysis demonstrates the success of the method on popular real datasets including ProPublica's COMPAS dataset. We also propose a new notion of fairness for machine learning and show that our technique satisfies this subjective fairness criterion.
Goel_Naman_AAAI.pdf
openaccess
419.05 KB
Adobe PDF
64eada7a148eaa473e2524c115fe0f87