Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models
 
conference paper

Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models

Khan, Mohammad Emtiyaz
•
Aravkin, Aleksandr
•
Friedlander, Michael
Show more
2013
Proceedings of the 30th International Conference on Machine Learning
30th International Conference on Machine Learning

Latent Gaussian models (LGMs) are widely used in statistics and machine learning. Bayesian inference in non-conjugate LGMs is difficult due to intractable integrals in- volving the Gaussian prior and non-conjugate likelihoods. Algorithms based on variational Gaussian (VG) approximations are widely employed since they strike a favorable bal- ance between accuracy, generality, speed, and ease of use. However, the structure of the optimization problems associated with these approximations remains poorly understood, and standard solvers take too long to con- verge. We derive a novel dual variational in- ference approach that exploits the convexity property of the VG approximations. We ob- tain an algorithm that solves a convex op- timization problem, reduces the number of variational parameters, and converges much faster than previous methods. Using real- world data, we demonstrate these advantages on a variety of LGMs, including Gaussian process classification, and latent Gaussian Markov random fields.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

final_paper_967.pdf

Access type

openaccess

Size

445.35 KB

Format

Adobe PDF

Checksum (MD5)

cfb3a6e45c608a0fc8973702cb0f126d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés