Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Rendering-dependent compression and quality evaluation for light field contents
 
conference paper

Rendering-dependent compression and quality evaluation for light field contents

Viola, Irene  
•
Takahashi, Keita
•
Fujii, Toshiaki
Show more
2019
[Proceedings of 2019 SPIE optics + photonics]
Applications of Digital Image Processing XLII, SPIE Optics + Photonics, Optical Engineering + Applications

Light field representation promises to overcome the limitations of stereoscopic representation by allowing for a more seamless transition between multiple points of views, thus giving a more faithful representation of 3D scenes. However, in order to take full advantage of such contents, there is a need for light field displays on which the data can be natively visualized. Assessing the visual quality of light field contents on native light field display is of extreme importance in future development of both new rendering methods, as well as new compression solutions. However, the limited availability of light field displays restricts the possibility of using them to carry out subjective tests. Moreover, hardware limitations in prototype models may lessen considerably the perceptual quality of experience in consuming light field contents. In this paper, we compare three different compression approaches for multi-layer displays, through both objective quality metrics and subjective quality assessment. Furthermore, we analyze the results obtained through subjective tests conducted using a prototype multi-layer display, and a recently-proposed framework to conduct quality assessment of light field contents rendered through a tensor display simulator in 2D screens. Using statistical tools, we assess the correlation among the two settings and we draw useful conclusions for future design of compression solutions and subjective tests for light field contents with multi-layer rendering.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SPIE2019.pdf

Access type

openaccess

Size

6.21 MB

Format

Adobe PDF

Checksum (MD5)

adfa1fa69e694b0275209ec368ec407b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés