Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring
 
conference paper

Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring

Boero, Cristina  
•
Carrara, Sandro  
•
Del Vecchio, Giovanna
Show more
2010
Proceedings of the 2010 IEEE/ICME International Conference on Complex Medical Engineering
2010 IEEE/ICME International Conference on Complex Medical Engineering

Monitoring of metabolic compounds, such as glucose and lactate, is extensively reported in literature, especially for clinical purposes. Instead, the application of such technologies for monitoring metabolites in cell cultures has not been explored. From one side, such devices can provide information to the current state-of-the-art of cell lines, particularly those which are not fully known, as stem and embryonic cells. On the other hand, those systems can pave the way to fully automation for growing cell cultures, when coupled with robots for feeding. Among different presented strategies to develop biosensors,carbon nanotubes exhibit great properties, particularly suitable for biosensing. In this work nanostructured electrodes by using multi-walled carbon nanotubes are presented for the detection of glucose and lactate. Firstly, some results from simulations are illustrated in order to foresee the behavior of carbon nanotubes depending on their orientation, when they are dispersed onto the electrode surface. Then, such developed biosensors are characterized in terms of sensitivity and detection limit, and are compared to previously published results. Finally, monitoring of a cell culture is performed and the behavior of metabolites is analyzed as biosensors validation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2010_icme_boero_conf.pdf

Access type

openaccess

Size

170.32 KB

Format

Adobe PDF

Checksum (MD5)

57f6fe0373417c313089efb52849d316

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés