Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. dhSegment: A generic deep-learning approach for document segmentation
 
Loading...
Thumbnail Image
conference paper

dhSegment: A generic deep-learning approach for document segmentation

Oliveira, Sofia Ares  
•
Seguin, Benoit  
•
Kaplan, Frederic  
January 1, 2018
Proceedings 2018 16Th International Conference On Frontiers In Handwriting Recognition (Icfhr)
16th International Conference on Frontiers in Handwriting Recognition (ICFHR)

In recent years there have been multiple successful attempts tackling document processing problems separately by designing task specific hand-tuned strategies. We argue that the diversity of historical document processing tasks prohibits to solve them one at a time and shows a need for designing generic approaches in order to handle the variability of historical series. In this paper, we address multiple tasks simultaneously such as page extraction, baseline extraction, layout analysis or multiple typologies of illustrations and photograph extraction. We propose an open-source implementation of a CNN-based pixel-wise predictor coupled with task dependent post-processing blocks. We show that a single CNN-architecture can be used across tasks with competitive results. Moreover most of the task-specific post-precessing steps can be decomposed in a small number of simple and standard reusable operations, adding to the flexibility of our approach.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés