Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Direct currents stimulate carbonate mineralization for soil improvement under various chemical conditions
 
research article

Direct currents stimulate carbonate mineralization for soil improvement under various chemical conditions

Terzis, Dimitrios  
•
Hicher, Patrick  
•
Laloui, Lyesse  
October 12, 2020
Scientific Reports

The present study integrates direct electric currents into traditional calcium carbonate mineralization to investigate electrochemical interactions and the subsequent crystalline growth of CaCO3 bonds in sand. A specific line of focus refers to the effect of three chemical reactive species involved in the stimulated geo-chemo-electric system, namely CaCl2, Ca(CH3COO)2 and Ca(CH3CH2(OH)COO)2. By altering treatment conditions and the applied electric field, we capture distinctive trends related to the: (i) overall reaction efficiencies and distribution of CaCO3 crystals is sand samples; (ii) promotion of CaCO3 mineralization due to DC (iii) crystallographic and textural properties of mineralized bonds. The study introduces the concept of EA-MICP which stands for Electrically Assisted Microbially Induced Carbonate Precipitation as a means of improving the efficiency of soil bio-cementation compared to traditional MICP-based works. Results reveal both the detrimental and highly beneficial effects that electric currents can hold in the complex, reactive and transport processes involved. An interesting observation refers to the “doped” morphology of CaCO3 crystals, which precipitate under electric fields, validated by crystallographic analyses and microstructural observations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41598-020-73926-z.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

5.3 MB

Format

Adobe PDF

Checksum (MD5)

242e3af4afdbb9621bb98a4db02fe20b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés