Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Conversion and shrinkage analysis of acrylated hyperbranched polymer nanocomposites
 
research article

Conversion and shrinkage analysis of acrylated hyperbranched polymer nanocomposites

Geiser, Valérie  
•
Leterrier, Yves  
•
Månson, Jan-Anders E.  
2009
Journal of Applied Polymer Science

The photo-curing behavior of composites containing nanosized SiO2 in an acrylated hyperbranched polymer matrix was investigated by means of photo differential scanning calorimetry. The chemical conversion data were analyzed using an autocatalytic model, paying close attention to the influence of composition and UV intensity. It was shown that the reaction order and the autocatalytic exponent were independent of UV intensity and filler fraction, whereas the rate constant showed strong intensity dependence, but weak filler dependence. Maximum conversion was independent of UV intensity, but was reduced when a filler was present. The dispersion state influenced the gel-point of the composites, but had no influence on the overall cure kinetics. Cure shrinkage reduction of ~33% could be achieved by adding 20 vol% of filler. This was attributed to the reduced double bond conversion of the matrix due to the presence of the filler. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 1954–1963, 2009

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

UV-HBP nanocomposites conversion.pdf

Access type

openaccess

Size

376.59 KB

Format

Adobe PDF

Checksum (MD5)

972a92432bfe8a729f5b5a8802e33622

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés