Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Monitoring Electrochemical Dynamics through Single-Molecule Imaging of hBN Surface Emitters in Organic Solvents
 
research article

Monitoring Electrochemical Dynamics through Single-Molecule Imaging of hBN Surface Emitters in Organic Solvents

Mayner, Eveline  
•
Ronceray, Nathan  
•
Lihter, M.  
Show more
September 25, 2024
ACS Nano

Electrochemical techniques conventionally lack spatial resolution and average local information over an entire electrode. While advancements in spatial resolution have been made through scanning probe methods, monitoring dynamics over large areas is still challenging, and it would be beneficial to be able to decouple the probe from the electrode itself. In this work, we leverage single molecule microscopy to spatiotemporally monitor analyte surface concentrations over a wide area using unmodified hexagonal boron nitride (hBN) in organic solvents. Through a sensing scheme based on redox-active species interactions with fluorescent emitters at the surface of hBN, we observe a region of a linear decrease in the number of emitters against increasingly positive potentials applied to a nearby electrode. We find consistent trends in electrode reaction kinetics vs overpotentials between potentiostat-reported currents and optically read emitter dynamics, showing Tafel slopes greater than 290 mV·decade-1. Finally, we draw on the capabilities of spectral single-molecule localization microscopy (SMLM) to monitor the fluorescent species’ identity, enabling multiplexed readout. Overall, we show dynamic measurements of analyte concentration gradients on a micrometer-length scale with nanometer-scale depth and precision. Considering the many scalable options for engineering fluorescent emitters with two-dimensional (2D) materials, our method holds promise for optically detecting a range of interacting species with exceptional localization precision.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

mayner-et-al-2024-monitoring-electrochemical-dynamics-through-single-molecule-imaging-of-hbn-surface-emitters-in.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

5.91 MB

Format

Adobe PDF

Checksum (MD5)

ec597131c3e0f1347715a058fb616e9a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés